z-logo
open-access-imgOpen Access
Type I Interferon Therapy Limits CNS Autoimmunity by Inhibiting CXCR3-Mediated Trafficking of Pathogenic Effector T Cells
Author(s) -
Weiwei Wang,
Wai Po Chong,
Chunmei Li,
Zilin Chen,
Sihan Wu,
Hongyan Zhou,
Ying Wan,
Wanjun Chen,
Igal Gery,
Yizhi Liu,
Rachel R. Caspi,
Jun Chen
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.06.021
Subject(s) - cxcr3 , effector , autoimmunity , immunology , interferon , biology , microbiology and biotechnology , medicine , chemokine , immune system , chemokine receptor
Type I interferons (IFNs) have therapeutic potential in CNS autoimmune diseases, such as uveitis, but the molecular mechanisms remain unclear. Using a T cell-transfer model of experimental autoimmune uveitis (EAU), we found that IFN-α/β treatment inhibited the migration of IFN-γ-producing pathogenic CD4 + T cells to effector sites. IFN-α/β upregulated the expression of the cognate ligands CXCL9, CXCL10, and CXCL11, causing ligand-mediated downregulation of CXCR3 expression and effector T cell retention in the spleen. Accordingly, type I IFN did not alter EAU progression in CXCR3 -/- mice. In uveitis patients, disease exacerbations correlated with reduced serum IFN-α concentrations. IFN-α/β reduced CXCR3 expression and migration by human effector T cells, and these parameters were associated with the therapeutic efficacy of IFN-α in uveitis patients. Our findings provide insight into the molecular basis of type I IFN therapy for CNS autoimmune diseases and identify CXCR3 as a biomarker for effective type I IFN immunotherapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom