Type I Interferon Therapy Limits CNS Autoimmunity by Inhibiting CXCR3-Mediated Trafficking of Pathogenic Effector T Cells
Author(s) -
Weiwei Wang,
Wai Po Chong,
Chunmei Li,
Zilin Chen,
Sihan Wu,
Hongyan Zhou,
Ying Wan,
Wanjun Chen,
Igal Gery,
Yizhi Liu,
Rachel R. Caspi,
Jun Chen
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.06.021
Subject(s) - cxcr3 , effector , autoimmunity , immunology , interferon , biology , microbiology and biotechnology , medicine , chemokine , immune system , chemokine receptor
Type I interferons (IFNs) have therapeutic potential in CNS autoimmune diseases, such as uveitis, but the molecular mechanisms remain unclear. Using a T cell-transfer model of experimental autoimmune uveitis (EAU), we found that IFN-α/β treatment inhibited the migration of IFN-γ-producing pathogenic CD4 + T cells to effector sites. IFN-α/β upregulated the expression of the cognate ligands CXCL9, CXCL10, and CXCL11, causing ligand-mediated downregulation of CXCR3 expression and effector T cell retention in the spleen. Accordingly, type I IFN did not alter EAU progression in CXCR3 -/- mice. In uveitis patients, disease exacerbations correlated with reduced serum IFN-α concentrations. IFN-α/β reduced CXCR3 expression and migration by human effector T cells, and these parameters were associated with the therapeutic efficacy of IFN-α in uveitis patients. Our findings provide insight into the molecular basis of type I IFN therapy for CNS autoimmune diseases and identify CXCR3 as a biomarker for effective type I IFN immunotherapy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom