Dissecting Sholl Analysis into Its Functional Components
Author(s) -
Alex D. Bird,
Hermann Cuntz
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.04.097
Subject(s) - computational biology , biology
Sholl analysis has been an important technique in dendritic anatomy for more than 60 years. The Sholl intersection profile is obtained by counting the number of dendritic branches at a given distance from the soma and is a key measure of dendritic complexity; it has applications from evaluating the changes in structure induced by pathologies to estimating the expected number of anatomical synaptic contacts. We find that the Sholl intersection profiles of most neurons can be reproduced from three basic, functional measures: the domain spanned by the dendritic arbor, the total length of the dendrite, and the angular distribution of how far dendritic segments deviate from a direct path to the soma (i.e., the root angle distribution). The first two measures are determined by axon location and hence microcircuit structure; the third arises from optimal wiring and represents a branching statistic estimating the need for conduction speed in a neuron.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom