z-logo
open-access-imgOpen Access
ACC Theta Improves Hippocampal Contextual Processing during Remote Recall
Author(s) -
Ryan A. Wirt,
James M. Hyman
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.04.080
Subject(s) - hippocampal formation , recall , neuroscience , memory consolidation , anterior cingulate cortex , coherence (philosophical gambling strategy) , psychology , computer science , hippocampus , cognitive psychology , cognition , physics , quantum mechanics
Consolidation studies show that, over time, memory recall becomes independent of the medial temporal lobes. Multiple lines of research show that the medial frontal cortex, including the anterior cingulate cortex (ACC), is involved with contextual information processing and remote recall. We hypothesize that interactions between the ACC and hippocampal area CA1 will change as memories became more remote. Animals are re-exposed to multiple environments at different retention intervals. During remote recall, ACC-CA1 theta coherence increases, with the ACC leading area CA1. ACC theta regulates unit spike timing, gamma oscillations, and ensemble and single-neuron information coding in CA1. Over the course of consolidation, the strength and prevalence of ACC theta modulation grow, leading to richer environmental context representations in CA1. These data are consistent with the transference of contextual memory dependence to the ACC and indicate that remote memories are retrieved via ACC-driven oscillatory coupling with CA1.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom