A Comprehensive Functional Characterization of Escherichia coli Lipid Genes
Author(s) -
Aike Jeucken,
Martijn R. Molenaar,
Chris H.A. van de Lest,
Jeroen W. A. Jansen,
J. Bernd Helms,
Jos F. Brouwers
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.04.018
Subject(s) - lipidome , escherichia coli , biology , gene , lipidomics , biochemistry , lipid metabolism , enzyme , computational biology , microbiology and biotechnology , chemistry
Lipid membranes are the border between living cells and their environments. The membrane's lipid composition defines fluidity, thickness, and protein activity and is controlled by the intricate actions of lipid gene-encoded enzymes. However, a comprehensive analysis of each protein's contribution to the lipidome is lacking. Here, we present such a comprehensive and functional overview of lipid genes in Escherichia coli by individual overexpression or deletion of these genes. We developed a high-throughput lipidomic platform, combining growth analysis, one-step lipid extraction, rapid LC-MS, and bioinformatic analysis into one streamlined procedure. This allowed the processing of more than 300 samples per day and revealed interesting functions of known enzymes and distinct effects of individual proteins on the phospholipidome. Our data demonstrate the plasticity of the phospholipidome and unexpected relations between lipid classes and cell growth. Modeling of lipidomic responses to short-chain alcohols provides a rationale for targeted membrane engineering.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom