Costimulation Induces CD4 T Cell Antitumor Immunity via an Innate-like Mechanism
Author(s) -
Crystal Morales Del Valle,
Joseph R. Maxwell,
Maria M. Xu,
Antoine Ménoret,
Payal Mittal,
Naomi Tsurutani,
Adam J. Adler,
Anthony T. Vella
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.04.016
Subject(s) - immunology , biology , antigen , t cell , cytokine , cd28 , acquired immune system , cancer research , microbiology and biotechnology , immune system
Chronic exposure to tumor-associated antigens inactivates cognate T cells, restricting the repertoire of tumor-specific effector T cells. This problem was studied here by transferring TCR transgenic CD4 T cells into recipient mice that constitutively express a cognate self-antigen linked to MHC II on CD11c-bearing cells. Immunotherapeutic agonists to CD134 plus CD137, "dual costimulation," induces specific CD4 T cell expansion and expression of the receptor for the Th2-associated IL-1 family cytokine IL-33. Rather than producing IL-4, however, they express the tumoricidal Th1 cytokine IFNγ when stimulated with IL-33 or IL-36 (a related IL-1 family member) plus IL-12 or IL-2. IL-36, which is induced within B16-F10 melanomas by dual costimulation, reduces tumor growth when injected intratumorally as a monotherapy and boosts the efficacy of tumor-nonspecific dual costimulated CD4 T cells. Dual costimulation thus enables chronic antigen-exposed CD4 T cells, regardless of tumor specificity, to elaborate tumoricidal function in response to tumor-associated cytokines.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom