Dopamine Modulation of Prefrontal Cortex Activity Is Manifold and Operates at Multiple Temporal and Spatial Scales
Author(s) -
Sweyta Lohani,
Adria K. Martig,
Karl Deisseroth,
Ilana B. Witten,
Bita Moghaddam
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.03.012
Subject(s) - dopamine , neuroscience , prefrontal cortex , psychology , premovement neuronal activity , biology , cognition
Although the function of dopamine in subcortical structures is largely limited to reward and movement, dopamine neurotransmission in the prefrontal cortex (PFC) is critical to a multitude of temporally and functionally diverse processes, such as attention, working memory, behavioral flexibility, action planning, and sustained motivational and affective states. How does dopamine influence computation of these temporally complex functions? We find causative links between sustained and burst patterns of phasic dopamine neuron activation and modulation of medial PFC neuronal activity at multiple spatiotemporal scales. These include a multidirectional and weak impact on individual neuron rate activity but a robust influence on coordinated ensemble activity, gamma oscillations, and gamma-theta coupling that persisted for minutes. In addition, PFC network responses to burst pattern of dopamine firing were selectively strengthened in behaviorally active states. This multiplex mode of modulation by dopamine input may enable PFC to compute and generate spatiotemporally diverse and specialized outputs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom