z-logo
open-access-imgOpen Access
Immune Cell Types and Secreted Factors Contributing to Inflammation-to-Cancer Transition and Immune Therapy Response
Author(s) -
Xingwei Chen,
Xu Chi,
Shengjun Hong,
Xian Xia,
Yaqiang Cao,
Joseph McDermott,
Yonglin Mu,
JingDong J. Han
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.01.080
Subject(s) - immune system , inflammation , angiogenesis , cancer , biology , transition (genetics) , cancer research , immunology , extracellular , gene , microbiology and biotechnology , genetics
Although chronic inflammation increases many cancers' risk, how inflammation facilitates cancer development is still not well studied. Recognizing whether and when inflamed tissues transition to cancerous tissues is of utmost importance. To unbiasedly infer molecular events, immune cell types, and secreted factors contributing to the inflammation-to-cancer (I2C) transition, we develop a computational package called "SwitchDetector" based on liver, gastric, and colon cancer I2C data. Using it, we identify angiogenesis associated with a common critical transition stage for multiple I2C events. Furthermore, we infer infiltrated immune cell type composition and their secreted or suppressed extracellular proteins to predict expression of important transition stage genes. This identifies extracellular proteins that may serve as early-detection biomarkers for pre-cancer and early-cancer stages. They alone or together with I2C hallmark angiogenesis genes are significantly related to cancer prognosis and can predict immune therapy response. The SwitchDetector and I2C database are publicly available at www.inflammation2cancer.org.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom