z-logo
open-access-imgOpen Access
ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin
Author(s) -
Friederike Saaber,
Dagmar Schütz,
Elke Miess,
Philipp Abe,
Srinidhi Desikan,
Praveen Ashok Kumar,
Sara Balk,
Ke Huang,
JeanMartin Beaulieu,
Stefan Schulz,
Ralf Stumm
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2019.01.049
Subject(s) - phosphorylation , microbiology and biotechnology , g protein coupled receptor , chemokine receptor , arrestin , biology , receptor , signal transduction , chemokine , biochemistry
Phosphorylation of heptahelical receptors is thought to regulate G protein signaling, receptor endocytosis, and non-canonical signaling via recruitment of β-arrestins. We investigated chemokine receptor functionality under phosphorylation-deficient and β-arrestin-deficient conditions by studying interneuron migration in the embryonic cortex. This process depends on CXCL12, CXCR4, G protein signaling and on the atypical CXCL12 receptor ACKR3. We found that phosphorylation was crucial, whereas β-arrestins were dispensable for ACKR3-mediated control of CXCL12 levels in vivo. Cortices of mice expressing phosphorylation-deficient ACKR3 exhibited a major interneuron migration defect, which was accompanied by excessive activation and loss of CXCR4. Cxcl12-overexpressing mice mimicked this phenotype. Excess CXCL12 caused lysosomal CXCR4 degradation, loss of CXCR4 responsiveness, and, ultimately, similar motility defects as Cxcl12 deficiency. By contrast, β-arrestin deficiency caused only a subtle migration defect mimicked by CXCR4 gain of function. These findings demonstrate that phosphorylation regulates atypical chemokine receptor function without β-arrestin involvement in chemokine sequestration and non-canonical signaling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom