z-logo
open-access-imgOpen Access
Leptin Signaling in the Arcuate Nucleus Reduces Insulin’s Capacity to Suppress Hepatic Glucose Production in Obese Mice
Author(s) -
Églantine Balland,
WeiYi Chen,
Garron T. Dodd,
Grégory Conductier,
Roberto Coppari,
Tony Tiganis,
Michael A. Cowley
Publication year - 2019
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.12.061
Subject(s) - medicine , endocrinology , leptin , insulin , hypothalamus , leptin receptor , insulin receptor , diet induced obese , arcuate nucleus , obesity , biology , insulin resistance
Insulin action in the hypothalamus results in the suppression of hepatic glucose production (HGP). Obesity is often associated with a diminished response to insulin, leading to impaired suppression of HGP in obese mice. Here, we demonstrate that blocking central leptin signaling in diet-induced obese (DIO) mice restores the liver's ability to suppress glucose production. Leptin increases the expression of the insulin receptor phosphatase PTP1B, which is highly expressed in the hypothalamus of DIO mice. We demonstrate that the central pharmacological inhibition or ARH-targeted deletion of PTP1B restores the suppression of HGP in obese mice. Additionally, mice that lack PTP1B in AgRP neurons exhibit enhanced ARH insulin signaling and have improved glucose tolerance and insulin sensitivity. Overall, our findings indicate that obesity-induced increases in PTP1B diminish insulin action in the hypothalamus, resulting in unconstrained HGP and contributing to hyperglycemia in obesity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom