z-logo
open-access-imgOpen Access
Characterizing Speed Cells in the Rat Hippocampus
Author(s) -
Zé Henrique T.D. Góis,
Adriano B. L. Tort
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.10.054
Subject(s) - hippocampal formation , path integration , neuroscience , hippocampus , grid cell , place cell , entorhinal cortex , inhibitory postsynaptic potential , speed of light (cellular automaton) , computer science , biology , physics , grid , mathematics , optics , geometry
Spatial navigation relies on visual landmarks as well as on self-motion information. In familiar environments, both place and grid cells maintain their firing fields in darkness, suggesting that they continuously receive information about locomotion speed required for path integration. Consistently, "speed cells" have been previously identified in the hippocampal formation and characterized in detail in the medial entorhinal cortex. Here we investigated speed-correlated firing in the hippocampus. We show that CA1 has speed cells that are stable across contexts, position in space, and time. Moreover, their speed-correlated firing occurs within theta cycles, independently of theta frequency. Interestingly, a physiological classification of cell types reveals that all CA1 speed cells are inhibitory. In fact, while speed modulates pyramidal cell activity, only the firing rate of interneurons can accurately predict locomotion speed on a sub-second timescale. These findings shed light on network models of navigation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom