Dissecting the Control Mechanisms for DNA Replication and Cell Division in E. coli
Author(s) -
Gabriele Micali,
Jacopo Grilli,
Jacopo Marchi,
Matteo Osella,
Marco Cosentino Lagomarsino
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.09.061
Subject(s) - cell division , replication (statistics) , bottleneck , dna replication , biology , division (mathematics) , origin of replication , cell cycle , origin recognition complex , pre replication complex , computational biology , cell , computer science , genetics , dna , eukaryotic dna replication , mathematics , arithmetic , virology , embedded system
Understanding the classic problem of how single E. coli cells coordinate cell division with genome replication would open the way to addressing cell-cycle progression at the single-cell level. Recent studies produced new data, but the contrast in their conclusions and proposed mechanisms makes the emerging picture fragmented and unclear. Here, we re-evaluate available data and models, including generalizations based on the same assumptions. We show that although they provide useful insights, none of the proposed models captures all correlation patterns observed in data. We conclude that the assumption that replication is the bottleneck process for cell division is too restrictive. Instead, we propose that two concurrent cycles responsible for division and initiation of DNA replication set the time of cell division. This framework allows us to select a nearly constant added size per origin between subsequent initiations as the most likely mechanism setting initiation of replication.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom