z-logo
open-access-imgOpen Access
Dissecting the Global Dynamic Molecular Profiles of Human Fetal Kidney Development by Single-Cell RNA Sequencing
Author(s) -
Ping Wang,
Yidong Chen,
Jun Yong,
Yueli Cui,
Rui Wang,
Lu Wen,
Jie Qiao,
Fuchou Tang
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.08.056
Subject(s) - biology , mesenchyme , nephron , kidney development , progenitor cell , microbiology and biotechnology , extracellular matrix , gene expression , gene , transcriptome , rna , embryonic stem cell , kidney , stem cell , genetics , mesenchymal stem cell
Healthy renal function depends on normal nephrogenesis during embryonic development. However, a comprehensive gene expression profile of human fetal kidney development remains largely unexplored. Here, using a single-cell RNA-sequencing technique, we analyzed >3,000 human fetal renal cells spanning 4 months of development in utero. Unsupervised analysis identified two progenitor subtypes during cap mesenchyme development, suggesting a mechanism for sustaining their progenitor states. Furthermore, we identified critical transcriptional regulators and signaling pathways involved in the segmentation of nephron tubules. We explored the development of the highly heterogeneous collecting duct epithelia and dissected the metabolic gene repertoire and the extracellular matrix composition of the glomerular mesangium. The results provide insights on the molecular basis and regulatory events in human renal development. Moreover, the cell-type-specific expression features of causal genes in congenital renal diseases may be helpful in the treatment of these diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom