Activation of Ras in the Vascular Endothelium Induces Brain Vascular Malformations and Hemorrhagic Stroke
Author(s) -
Qingfen Li,
Brandee DeckerRockefeller,
Anshika Bajaj,
Kevin Pumiglia
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.08.025
Subject(s) - pathogenesis , phenotype , pathology , intracerebral hemorrhage , biology , blood–brain barrier , mutant , stroke (engine) , population , microbiology and biotechnology , medicine , cancer research , gene , central nervous system , neuroscience , genetics , mechanical engineering , engineering , environmental health , subarachnoid hemorrhage
Cerebrovascular malformations (CVMs) affect approximately 3% of the population, risking hemorrhagic stroke, seizures, and neurological deficits. Recently Ras mutations have been identified in a majority of brain arterio-venous malformations. We generated an endothelial-specific, inducible HRAS V12 mouse model, which results in dilated, proliferative blood vessels in the brain, blood-brain barrier breakdown, intracerebral hemorrhage, and rapid lethality. Organoid morphogenesis models revealed abnormal cessation of proliferation, abnormalities in expression of tip and stalk genes, and a failure to properly form elongating tubes. These defects were influenced by both hyperactive PI-3' kinase signaling and altered TGF-β signaling. Several phenotypic changes predicted by the in vitro morphogenesis analysis were validated in the mouse model. These data provide a model of brain vascular malformations induced by mutant Ras and reveal insights into intersecting molecular mechanisms in the pathogenesis of brain vascular malformations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom