z-logo
open-access-imgOpen Access
Proximal Cysteines that Enhance Lysine N-Acetylation of Cytosolic Proteins in Mice Are Less Conserved in Longer-Living Species
Author(s) -
Andrew M. James,
Anthony C. Smith,
Cassandra L. Smith,
Alan J. Robinson,
Michael P. Murphy
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.07.007
Subject(s) - acetylation , lysine , cysteine , biochemistry , biology , cytosol , conserved sequence , function (biology) , enzyme , chemistry , genetics , peptide sequence , amino acid , gene
Acetyl-coenzyme A (CoA) is an abundant metabolite that can also alter protein function through non-enzymatic N-acetylation of protein lysines. This N-acetylation is greatly enhanced in vitro if an adjacent cysteine undergoes initial S-acetylation, as this can lead to S→N transfer of the acetyl moiety. Here, using modeled mouse structures of 619 proteins N-acetylated in mouse liver, we show lysine N-acetylation is greater in vivo if a cysteine is within ∼10 Å. Extension to the genomes of 52 other mammalian and bird species shows pairs of proximal cysteine and N-acetylated lysines are less conserved, implying most N-acetylation is detrimental. Supporting this, there is less conservation of cytosolic pairs of proximal cysteine and N-acetylated lysines in species with longer lifespans. As acetyl-CoA levels are linked to nutrient supply, these findings suggest how dietary restriction could extend lifespan and how pathologies resulting from dietary excess may occur.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom