Combining mGRASP and Optogenetics Enables High-Resolution Functional Mapping of Descending Cortical Projections
Author(s) -
Jun Song,
Diana Lucaci,
Ioana Calangiu,
Matthew T. Brown,
JinSung Park,
Jinhyun Kim,
Stephen G. Brickley,
Paul Chadderton
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.06.076
Subject(s) - optogenetics , soma , neuroscience , synapse , biological neural network , channelrhodopsin , functional connectivity , computer science , biology
We have applied optogenetics and mGRASP, a light microscopy technique that labels synaptic contacts, to map the number and strength of defined corticocollicular (CC) connections. Using mGRASP, we show that CC projections form small, medium, and large synapses, and both the number and the distribution of synapse size vary among the IC regions. Using optogenetics, we show that low-frequency stimulation of CC axons expressing channelrhodopsin produces prolonged elevations of the CC miniature EPSC (mEPSC) rate. Functional analysis of CC mEPSCs reveals small-, medium-, and large-amplitude events that mirror the synaptic distributions observed with mGRASP. Our results reveal that descending ipsilateral projections dominate CC feedback via an increased number of large synaptic contacts, especially onto the soma of IC neurons. This study highlights the feasibility of combining microscopy (i.e., mGRASP) and optogenetics to reveal synaptic weighting of defined projections at the level of single neurons, enabling functional connectomic mapping in diverse neural circuits.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom