z-logo
open-access-imgOpen Access
RADX Modulates RAD51 Activity to Control Replication Fork Protection
Author(s) -
Kamakoti P. Bhat,
Archana Krishnamoorthy,
Huzefa Dungrawala,
Edwige B. Garcin,
Mauro Modesti,
David Cortez
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.06.061
Subject(s) - fork (system call) , replication (statistics) , rad51 , microbiology and biotechnology , biology , genetics , computer science , virology , gene , dna repair , operating system
RAD51 promotes homologous recombination repair (HR) of double-strand breaks and acts during DNA replication to facilitate fork reversal and protect nascent DNA strands from nuclease digestion. Several additional HR proteins regulate fork protection by promoting RAD51 filament formation. Here, we show that RADX modulates stalled fork protection by antagonizing RAD51. Consequently, silencing RADX restores fork protection in cells deficient for BRCA1, BRCA2, FANCA, FANCD2, or BOD1L. Inactivating RADX prevents both MRE11- and DNA2-dependent fork degradation. Furthermore, RADX overexpression causes fork degradation that is dependent on these nucleases and fork reversal. The amount of RAD51 determines the fate of stalled replication forks, with more RAD51 required for fork protection than fork reversal. Finally, we find that RADX effectively competes with RAD51 for binding to single-stranded DNA, supporting a model in which RADX buffers RAD51 to ensure the right amount of reversal and protection to maintain genome stability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom