z-logo
open-access-imgOpen Access
Longitudinal Alzheimer’s Degeneration Reflects the Spatial Topography of Cholinergic Basal Forebrain Projections
Author(s) -
Taylor W. Schmitz,
Marieke Mur,
Meghmik Aghourian,
MarcAndré Bedard,
R. Nathan Spreng
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.06.001
Subject(s) - basal forebrain , cholinergic neuron , neuroscience , cholinergic , degeneration (medical) , basal (medicine) , biology , forebrain , anatomy , central nervous system , medicine , pathology , endocrinology , insulin
The cholinergic neurons of the basal forebrain (BF) provide virtually all of the brain's cortical and amygdalar cholinergic input. They are particularly vulnerable to neuropathology in early Alzheimer's disease (AD) and may trigger the emergence of neuropathology in their cortico-amygdalar projection system through cholinergic denervation and trans-synaptic spreading of misfolded proteins. We examined whether longitudinal degeneration within the BF can explain longitudinal cortico-amygdalar degeneration in older human adults with abnormal cerebrospinal fluid biomarkers of AD neuropathology. We focused on two BF subregions, which are known to innervate cortico-amygdalar regions via two distinct macroscopic cholinergic projections. To further assess whether structural degeneration of these regions in AD reflects cholinergic denervation, we used the [ 18 F] FEOBV radiotracer, which binds to cortico-amygdalar cholinergic terminals. We found that the two BF subregions explain spatially distinct patterns of cortico-amygdalar degeneration, which closely reflect their cholinergic projections, and overlap with [ 18 F] FEOBV indices of cholinergic denervation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom