z-logo
open-access-imgOpen Access
A Bacterial Growth Law out of Steady State
Author(s) -
Yael Korem Kohanim,
Dikla Levi,
Ghil Jona,
Benjamin D. Towbin,
Anat Bren,
Uri Alon
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.05.007
Subject(s) - chemostat , growth rate , steady state (chemistry) , bacterial growth , exponential growth , constant (computer programming) , biology , bacteria , economics , biophysics , mathematics , chemistry , mathematical analysis , computer science , genetics , geometry , programming language
Bacterial growth follows simple laws in constant conditions. However, bacteria in nature often face fluctuating environments. We therefore ask whether there are growth laws that apply to changing environments. We derive a law for upshifts using an optimal resource-allocation model: the post-shift growth rate equals the geometrical mean of the pre-shift growth rate and the growth rate on saturating carbon. We test this using chemostat and batch culture experiments, as well as previous data from several species. The increase in growth rate after an upshift indicates that ribosomes have spare capacity (SC). We demonstrate theoretically that SC has the cost of slow steady-state growth but is beneficial after an upshift because it prevents large overshoots in intracellular metabolites and allows rapid response to change. We also provide predictions for downshifts. The present study quantifies the optimal degree of SC, which rises the slower the growth rate, and suggests that SC can be precisely regulated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom