Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6
Author(s) -
R Chin,
Tadas Panavas,
Jeffrey M. Brown,
Krista Johnson
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.02.059
Subject(s) - mitochondrion , biology , mitochondrial dna , gene , microbiology and biotechnology , cytosol , mitochondrial disease , dnaja3 , translation (biology) , point mutation , genome , phenotype , gene expression , hspa9 , genetics , mutation , messenger rna , mitochondrial fusion , peptide sequence , biochemistry , enzyme
Mitochondrial disease may be caused by mutations in the protein-coding genes of the mitochondrial genome. A promising strategy for treating such diseases is allotopic expression-the translation of wild-type copies of these proteins in the cytosol, with subsequent translocation into the mitochondria, resulting in rescue of mitochondrial function. In this paper, we develop an automated, quantitative, and unbiased screening platform to evaluate protein localization and mitochondrial morphology. This platform was used to compare 31 mitochondrial targeting sequences and 15 3' UTRs in their ability to localize up to 9 allotopically expressed proteins to the mitochondria and their subsequent impact on mitochondrial morphology. Taking these two factors together, we synthesized chemically modified mRNAs that encode for an optimized allotopic expression construct for mtATP6. These mRNAs were able to functionally rescue a cell line harboring the 8993T > G point mutation in the mtATP6 gene.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom