IL-23 and IL-1β Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation
Author(s) -
Shankar Revu,
Jing Wu,
Matthew Henkel,
Natalie Rittenhouse,
Ashley V. Menk,
Greg M. Delgoffe,
Amanda C. Poholek,
Mandy J. McGeachy
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.02.044
Subject(s) - cd28 , microbiology and biotechnology , t cell receptor , t cell , cellular differentiation , biology , cytokine , reprogramming , chemistry , immunology , cell , immune system , biochemistry , gene
Th17 cells drive autoimmune disease but also control commensal microbes. A common link among antigens from self-proteins or commensal microbiota is relatively low activation of T cell receptor (TCR) and costimulation signaling. Indeed, strong TCR/CD28 stimulation suppressed Th17 cell differentiation from human naive T cells, but not effector/memory cells. CD28 suppressed the classical Th17 transcriptional program, while inducing known Th17 regulators, and acted through an Akt-dependent mechanism. Th17 cells differentiated without CD28 were not anergic: they showed robust proliferation and maintained Th17 cytokine production following restimulation. Interleukin (IL)-23 and IL-1β promoted glucose uptake and increased glycolysis. Although modestly increased compared to CD28 costimulation, glycolysis was necessary to support Th17 differentiation, indicating that cytokine-mediated metabolic shifts were sufficient to obviate the classical requirement for CD28 in Th17 differentiation. Together, these data propose that, in humans, strength of TCR/CD28/Akt activation serves as a rheostat tuning the magnitude of Th17 development driven by IL-23 and IL-1β.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom