z-logo
open-access-imgOpen Access
IL-23 and IL-1β Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation
Author(s) -
Shankar Revu,
Jing Wu,
Matthew Henkel,
Natalie Rittenhouse,
Ashley V. Menk,
Greg M. Delgoffe,
Amanda C. Poholek,
Mandy J. McGeachy
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.02.044
Subject(s) - cd28 , microbiology and biotechnology , t cell receptor , t cell , cellular differentiation , biology , cytokine , reprogramming , chemistry , immunology , cell , immune system , biochemistry , gene
Th17 cells drive autoimmune disease but also control commensal microbes. A common link among antigens from self-proteins or commensal microbiota is relatively low activation of T cell receptor (TCR) and costimulation signaling. Indeed, strong TCR/CD28 stimulation suppressed Th17 cell differentiation from human naive T cells, but not effector/memory cells. CD28 suppressed the classical Th17 transcriptional program, while inducing known Th17 regulators, and acted through an Akt-dependent mechanism. Th17 cells differentiated without CD28 were not anergic: they showed robust proliferation and maintained Th17 cytokine production following restimulation. Interleukin (IL)-23 and IL-1β promoted glucose uptake and increased glycolysis. Although modestly increased compared to CD28 costimulation, glycolysis was necessary to support Th17 differentiation, indicating that cytokine-mediated metabolic shifts were sufficient to obviate the classical requirement for CD28 in Th17 differentiation. Together, these data propose that, in humans, strength of TCR/CD28/Akt activation serves as a rheostat tuning the magnitude of Th17 development driven by IL-23 and IL-1β.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom