z-logo
open-access-imgOpen Access
Targeting a Sirt5-Positive Subpopulation Overcomes Multidrug Resistance in Wild-Type Kras Colorectal Carcinomas
Author(s) -
Zunguo Du,
Xiujuan Liu,
Tao Chen,
Wenchao Gao,
ZhengMing Wu,
Zhiqian Hu,
Wei Dong,
Chunfang Gao,
Qingquan Li
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.02.037
Subject(s) - kras , colorectal cancer , multiple drug resistance , cancer research , wild type , biology , medicine , cancer , drug resistance , genetics , mutant , gene
A major obstacle for successful management of patients with colorectal carcinoma (CRC) is resistance to anti-cancer cytotoxic treatments. Here, we identified a mechanism of multidrug resistance in wild-type Kras CRCs based on the survival of a cell subpopulation characterized by Sirt5 expression. Sirt5+ cells in wild-type Kras CRCs are resistant to either chemotherapeutic agents or cetuximab and serve as a reservoir for recurrence. Sirt5 demalonylates and inactivates succinate dehydrogenase complex subunit A (SDHA), leading to an accumulation of the oncometabolite succinate. Succinate binds to and activates a reactive oxygen species-scavenging enzyme, thioredoxin reductase 2 (TrxR2), to confer chemotherapy resistance. In contrast, Sirt5+ cells exhibit an elevated succinate-to-aKG ratio that inhibits aKG-dependent dioxygenases to maintain cetuximab resistance. Our findings suggest that Sirt5 inhibitors in combination with chemotherapeutic agents and/or cetuximab may represent a therapeutic strategy for CRC patients harboring wild-type Kras.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom