z-logo
open-access-imgOpen Access
Prion-like Propagation of α-Synuclein Is Regulated by the FcγRIIB-SHP-1/2 Signaling Pathway in Neurons
Author(s) -
Yu Ree Choi,
SeonHeui Cha,
SeoJun Kang,
Jae-Bong Kim,
Ilo Jou,
Sang Myun Park
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2017.12.009
Subject(s) - microbiology and biotechnology , intracellular , cell , signal transduction , receptor , biology , cell signaling , mechanism (biology) , neuroscience , chemistry , biochemistry , philosophy , epistemology
Recent evidence of prion-like propagation of α-synuclein (α-syn) into neighboring neurons set up a paradigm to elucidate the mechanism of progression of Parkinson's disease (PD) and to develop therapeutic strategies. Here, we show that FcγRIIB expressed in neurons functions as a receptor for α-syn fibrils and mediates cell-to-cell transmission of α-syn. SHP-1 and 2 are activated downstream by α-syn fibrils through FcγRIIB and play an important role in cell-to-cell transmission of α-syn. Also, taking advantage of a co-culture system, we show that cell-to-cell transmission of α-syn induces intracellular Lewy body-like inclusion body formation and that the FcγRIIB/SHP-1/2 signaling pathway is involved in it. Therefore, the FcγRIIB-SHP-1/-2 signaling pathway may be a therapeutic target for the progression of PD. The in vitro system is an efficient tool for further high-throughput screening that can be used for developing a therapeutic intervention in PD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom