Reciprocal Expression of IL-35 and IL-10 Defines Two Distinct Effector Treg Subsets that Are Required for Maintenance of Immune Tolerance
Author(s) -
Xundong Wei,
Jianhua Zhang,
Qianchong Gu,
Man Huang,
Wei Zhang,
Jie Guo,
Xuyu Zhou
Publication year - 2017
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2017.10.090
Subject(s) - effector , biology , foxp3 , immunology , immune tolerance , immune system , regulator , microbiology and biotechnology , transcription factor , population , autoimmunity , genetics , gene , medicine , environmental health
Regulatory T cells (Tregs) can exert their functions through multiple suppressive mechanisms; however, it is unclear how Tregs exactly employ these mechanisms. In this study, we found that interleukin-35 (IL-35)-producing Tregs were a distinct effector population from the IL-10-producing subset. We also revealed that these two subsets of effector Tregs have different transcription factor dependency. Terminal differentiation regulator Blimp1 was only critical for IL-10 production, but not for IL-35; Foxp3 was essential for IL-35 but dispensable for IL-10 production. Furthermore, we demonstrated that IL-35-producing and IL-10-producing Tregs have a different activation status, do not share the same geographic locations in secondary lymphoid organs, and work in a complementary way to prevent autoimmunity. Thus, our study highlights the importance of effector Treg generation. We also provide evidence of Treg activation status tuning the generation of distinct effector Treg subsets, which work cooperatively to maintain immune tolerance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom