SUMOylation Promotes Nuclear Import and Stabilization of Polo-like Kinase 1 to Support Its Mitotic Function
Author(s) -
Donghua Wen,
Jian Wu,
Lei Wang,
Zheng Fu
Publication year - 2017
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2017.10.085
Subject(s) - sumo protein , plk1 , mitosis , microbiology and biotechnology , biology , regulator , polo like kinase , ubiquitin , cyclin dependent kinase 1 , phosphorylation , cyclin b1 , kinase , biochemistry , cell cycle , gene
As a pivotal mitotic regulator, polo-like kinase 1 (PLK1) is under highly coordinated and multi-layered regulation. However, the pathways that control PLK1's activity and function have just begun to be elucidated. PLK1 has recently been shown to be functionally modulated by post-translational modifications (PTMs), including phosphorylation and ubiquitination. Herein, we report that SUMOylation plays an essential role in regulating PLK1's mitotic function. We found that Ubc9 was recruited to PLK1 upon initial phosphorylation and activation by CDK1/cyclin B. By in vivo and in vitro SUMOylation assays, PLK1 was identified as a physiologically relevant small ubiquitin-related modifier (SUMO)-targeted protein, preferentially modified by SUMO-1. We further showed that K492 on PLK1 is essential for SUMOylation. SUMOylation causes PLK1's nuclear import and significantly increases its protein stability, both of which are critical for normal mitotic progression and genomic integrity. Our findings suggest that SUMOylation is an important regulatory mechanism governing PLK1's mitotic function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom