z-logo
open-access-imgOpen Access
Functional Insights into ANP32A-Dependent Influenza A Virus Polymerase Host Restriction
Author(s) -
Patricia Domingues,
Benjamin G. Hale
Publication year - 2017
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2017.08.061
Subject(s) - biology , influenza a virus subtype h5n1 , host adaptation , polymerase , host (biology) , virus , function (biology) , genetics , virology , computational biology , genome , gene
Host restriction of influenza A virus limits pandemic emergence. The viral RNA polymerase (vPol) is an essential enzyme that must adapt for avian viruses to replicate in humans. Species differences in host ANP32A dictate adaptation: human ANP32A lacks an uncharacterized 33 amino-acid insertion that is present in avian ANP32A. Here, we uncover important contributions of host SUMOylation to vPol activity, including avANP32A function. We also identify a hydrophobic SUMO interaction motif (SIM)-like sequence unique to avANP32A that critically supports avian-signature vPol. Unrelated SIM sequences partially recapitulate this function when introduced into huANP32A. By investigating ANP32A-vPol interactions, we find that huANP32A interacts weakly with both human- and avian-signature vPols, while the hydrophobic motif of avANP32A promotes stronger interactions. Furthermore, we identify a highly acidic stretch in avANP32A that constitutes a major site of vPol interaction. Our data suggest compensatory mechanisms underlying vPol adaptation to host ANP32A independent of species-specific interactions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom