z-logo
open-access-imgOpen Access
Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System
Author(s) -
Kexin Zhao,
Neale D. Ridgway
Publication year - 2017
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2017.05.028
Subject(s) - oxysterol , npc1 , endoplasmic reticulum , endosome , golgi apparatus , microbiology and biotechnology , cholesterol , sterol regulatory element binding protein , sterol , biology , transport protein , vesicle , biochemistry , chemistry , membrane , intracellular
Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs) by Niemann-Pick C1 (NPC1). However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER) is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L) is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP)-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom