Chemokine Signaling and the Regulation of Bidirectional Leukocyte Migration in Interstitial Tissues
Author(s) -
Davalyn R. Powell,
Sébastien Tauzin,
Laurel E. Hind,
Qing Deng,
David J. Beebe,
Anna Huttenlocher
Publication year - 2017
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2017.04.078
Subject(s) - chemokine , microbiology and biotechnology , signal transduction , immunology , chemistry , biology , inflammation
Motile cells navigate through complex tissue environments that include both attractive and repulsive cues. In response to tissue wounding, neutrophils, primary cells of the innate immune response, exhibit bidirectional migration that is orchestrated by chemokines and their receptors. Although progress has been made in identifying signals that mediate the recruitment phase, the mechanisms that regulate neutrophil reverse migration remain largely unknown. Here, we visualize bidirectional neutrophil migration to sterile wounds in zebrafish larvae and identify specific roles for the chemokine receptors Cxcr1 and Cxcr2 in neutrophil recruitment to sterile injury and infection. Notably, we also identify Cxcl8a/Cxcr2 as a specific ligand-receptor pair that orchestrates neutrophil chemokinesis in interstitial tissues during neutrophil reverse migration and resolution of inflammation. Taken together, our findings identify distinct receptors that mediate bidirectional leukocyte motility during interstitial migration depending on the context and type of tissue damage in vivo.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom