z-logo
open-access-imgOpen Access
YAP Regulates Actin Dynamics through ARHGAP29 and Promotes Metastasis
Author(s) -
Yiting Qiao,
Jianxiang Chen,
Ying Bena Lim,
Megan FinchEdmondson,
Veerabrahma Pratap Seshachalam,
Lei Qin,
Tingting Jiang,
Boon Chuan Low,
Himanshu Singh,
Chwee Teck Lim,
Marius Sudol
Publication year - 2017
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2017.04.075
Subject(s) - microbiology and biotechnology , dynamics (music) , actin , metastasis , chemistry , biology , genetics , cancer , physics , acoustics
Yes-associated protein (YAP) is regulated by mechanical cues via the interaction of the Hippo pathway with cytoskeleton. Previous studies showed that YAP plays a role in regulating the actomyosin network by suppressing Rho GTPase in medaka fish. Here, we identify Rho GTPase activating protein 29 (ARHGAP29) as a transcriptional target of YAP in a human gastric cancer cell line. YAP promotes the expression of ARHGAP29 to suppress the RhoA-LIMK-cofilin pathway, destabilizing F-actin. The overexpression of YAP causes cytoskeletal rearrangement by altering the dynamics of F-actin/G-actin turnover, thus promoting migration. In a mouse model, circulating tumor cells (CTCs) exhibit an increased ARHGAP29 RNA level compared with cells at primary tumor sites, and the metastatic potential of CTCs is positively correlated with ARHGAP29 expression. Moreover, increased ARHGAP29 expression is correlated with shortened survival of human gastric cancer patients. Our study provides a model to understand YAP's contribution to cancer metastasis via regulation of actin dynamics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom