Diversity in Excitation-Inhibition Mismatch Underlies Local Functional Heterogeneity in the Rat Auditory Cortex
Author(s) -
Can Tao,
Guangwei Zhang,
Chang Zhou,
Lijuan Wang,
Sumei Yan,
Huizhong W. Tao,
Li I. Zhang,
Yi Zhou,
Ying Xiong
Publication year - 2017
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2017.03.061
Subject(s) - auditory cortex , neuroscience , receptive field , local field potential , sensory system , homogeneous , biology , cortex (anatomy) , electrophysiology , physics , thermodynamics
Cortical neurons are heterogeneous in their functional properties. This heterogeneity is fundamental for the processing of different features of sensory information. However, functional diversity within a local group of neurons is poorly understood. Here, we demonstrate that neighboring cortical neurons in layer 5 but not those of layer 4 of the rat anterior auditory field (AAF) exhibited a surprisingly high level of diversity in tonal receptive fields. In vivo whole-cell voltage-clamp recordings revealed that the diversity of frequency representation was due to a spectral mismatch between synaptic excitation and inhibition to varying degrees. The spectral distribution of excitation was skewed at different levels, whereas inhibition was homogeneous and non-skewed, similar to the summed spiking activity of local neuronal ensembles, which further enhanced diversity. Our results indicate that AAF in the auditory cortex is involved in processing auditory information in a highly refined manner that is important for complex pattern recognition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom