Generating Late-Onset Human iPSC-Based Disease Models by Inducing Neuronal Age-Related Phenotypes through Telomerase Manipulation
Author(s) -
Elsa Vera,
Nazario Bosco,
Lorenz Studer
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.09.062
Subject(s) - phenotype , telomerase , disease , biology , clinical phenotype , neuroscience , induced pluripotent stem cell , age of onset , microbiology and biotechnology , genetics , bioinformatics , medicine , gene , embryonic stem cell
Modeling late-onset disorders such as Parkinson's disease (PD) using iPSC technology remains a challenge, as current differentiation protocols yield cells with the properties of fetal-stage cells. Here, we tested whether it is possible to accelerate aging in vitro to trigger late-onset disease phenotypes in an iPSC model of PD. In order to manipulate a factor that is involved in natural aging as well as in premature aging syndromes, we used telomere shortening as an age-inducing tool. We show that shortened telomeres result in age-associated as well as potentially disease-associated phenotypes in human pluripotent stem cell (hPSC)-derived midbrain dopamine (mDA) neurons. Our approach provides proof of concept for the further validation of telomere shortening as an induced-aging tool for late-onset-disease modeling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom