Hypofunctional TrkA Accounts for the Absence of Pain Sensitization in the African Naked Mole-Rat
Author(s) -
Damir Omerbašić,
Ewan St. John Smith,
Mirko Moroni,
Johanna Homfeld,
Ole Eigenbrod,
Nigel C. Bennett,
Jane Reznick,
Chris G. Faulkes,
Matthias Selbach,
Gary R. Lewin
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.09.035
Subject(s) - trpv1 , tropomyosin receptor kinase a , sensitization , hyperalgesia , capsaicin , mole , nociceptor , nerve growth factor , chemistry , nociception , endocrinology , receptor , medicine , microbiology and biotechnology , biology , neuroscience , biochemistry , transient receptor potential channel
The naked mole-rat is a subterranean rodent lacking several pain behaviors found in humans, rats, and mice. For example, nerve growth factor (NGF), an important mediator of pain sensitization, fails to produce thermal hyperalgesia in naked mole-rats. The sensitization of capsaicin-sensitive TRPV1 ion channels is necessary for NGF-induced hyperalgesia, but naked mole-rats have fully functional TRPV1 channels. We show that exposing isolated naked mole-rat nociceptors to NGF does not sensitize TRPV1. However, the naked mole-rat NGF receptor TrkA displays a reduced ability to engage signal transduction pathways that sensitize TRPV1. Between one- and three-amino-acid substitutions in the kinase domain of the naked mole-rat TrkA are sufficient to render the receptor hypofunctional, and this is associated with the absence of heat hyperalgesia. Our data suggest that evolution has selected for a TrkA variant that abolishes a robust nociceptive behavior in this species but is still compatible with species fitness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom