z-logo
open-access-imgOpen Access
Stargazin Modulation of AMPA Receptors
Author(s) -
Sana Shaikh,
Drew M. Dolino,
Garam Lee,
Sudeshna Chatterjee,
David M. MacLean,
Charlotte Flatebo,
Christy F. Landes,
Vasanthi Jayaraman
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.09.014
Subject(s) - ampa receptor , ionotropic effect , chemistry , glutamate receptor , receptor , biophysics , kainate receptor , gating , excitatory postsynaptic potential , neuroscience , silent synapse , microbiology and biotechnology , biology , biochemistry
Fast excitatory synaptic signaling in the mammalian brain is mediated by AMPA-type ionotropic glutamate receptors. In neurons, AMPA receptors co-assemble with auxiliary proteins, such as stargazin, which can markedly alter receptor trafficking and gating. Here, we used luminescence resonance energy transfer measurements to map distances between the full-length, functional AMPA receptor and stargazin expressed in HEK293 cells and to determine the ensemble structural changes in the receptor due to stargazin. In addition, we used single-molecule fluorescence resonance energy transfer to study the structural and conformational distribution of the receptor and how this distribution is affected by stargazin. Our nanopositioning data place stargazin below the AMPA receptor ligand-binding domain, where it is well poised to act as a scaffold to facilitate the long-range conformational selection observations seen in single-molecule experiments. These data support a model of stargazin acting to stabilize or select conformational states that favor activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom