z-logo
open-access-imgOpen Access
Dynamic Regulation of a Ribosome Rescue Pathway in Erythroid Cells and Platelets
Author(s) -
Eric W. Mills,
Jamie R Wangen,
Rachel Green,
Nicholas T. Ingolia
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.08.088
Subject(s) - microbiology and biotechnology , platelet , biology , ribosome , chemistry , rna , immunology , genetics , gene
Protein synthesis continues in platelets and maturing reticulocytes, although these blood cells lack nuclei and do not make new mRNA or ribosomes. Here, we analyze translation in primary human cells from anucleate lineages by ribosome profiling and uncover a dramatic accumulation of post-termination unrecycled ribosomes in the 3' UTRs of mRNAs. We demonstrate that these ribosomes accumulate as a result of the natural loss of the ribosome recycling factor ABCE1 during terminal differentiation. Induction of the ribosome rescue factors PELO and HBS1L is required to support protein synthesis when ABCE1 levels fall and for hemoglobin production during blood cell development. Our observations suggest that this distinctive loss of ABCE1 in anucleate blood lineages could sensitize them to defects in ribosome homeostasis, perhaps explaining in part why genetic defects in the fundamental process of ribosome production ("ribosomopathies") often affect hematopoiesis specifically.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom