z-logo
open-access-imgOpen Access
Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells from Nijmegen Breakage Syndrome Patients
Author(s) -
Tomer Halevy,
Shira Akov,
Martina Bohndorf,
Barbara Mlody,
James Adjaye,
Nissim Benvenisty,
Michal Goldberg
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.07.071
Subject(s) - nijmegen breakage syndrome , chromosome instability , induced pluripotent stem cell , genome instability , biology , stem cell , genetics , medicine , embryonic stem cell , dna , chromosome , dna damage , gene , ataxia telangiectasia
Nijmegen breakage syndrome (NBS) results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs). NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here, we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs). Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress, and abnormal cell-cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs) show downregulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed light on the molecular mechanisms underlying this severe syndrome, and further expand our knowledge of the genomic stress cells experience during the reprogramming process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom