IPP Complex Reinforces Adhesion by Relaying Tension-Dependent Signals to Inhibit Integrin Turnover
Author(s) -
Katerina M. Vakaloglou,
Georgios Chrysanthis,
Maria Anna Rapsomaniki,
Zoi Lygerou,
Christos G. Zervas
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.06.079
Subject(s) - scopus , computer science , integrin , chemistry , world wide web , library science , information retrieval , cell , biochemistry , medline
Summary Cytoskeleton-mediated forces regulate the assembly and function of integrin adhesions; however, the underlying mechanisms remain unclear. The tripartite IPP complex, comprising ILK, Parvin, and PINCH, mediates the integrin-actin link at Drosophila embryo muscle attachment sites (MASs). Here, we demonstrate a developmentally earlier function for the IPP complex: to reinforce integrin-extracellular matrix (ECM) adhesion in response to tension. In IPP-complex mutants, the integrin-ECM linkage at MASs breaks in response to intense muscle contractility. Mechanistically, the IPP complex is required to relay force-elicited signals that decelerate integrin turnover at the plasma membrane so that the integrin immobile fraction is adequate to withstand tension. Epistasis analysis shows that alleviation of muscle contractility, downregulation of endocytosis, and enhanced integrin binding to the ECM are sufficient to restore integrin-ECM adhesion and maintain integrin-adhesome organization in IPP-complex mutants. Our findings reveal a role for the IPP complex as an essential mechanosensitive regulatory switch of integrin turnover in vivo.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom