z-logo
open-access-imgOpen Access
A Fluorescent Reporter Mouse for Inflammasome Assembly Demonstrates an Important Role for Cell-Bound and Free ASC Specks during In Vivo Infection
Author(s) -
TeChen Tzeng,
Stefan A. Schattgen,
Brian G. Monks,
Donghai Wang,
Anna Cerny,
Eicke Latz,
Katherine A. Fitzgerald,
Douglas T. Golenbock
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.06.011
Subject(s) - inflammasome , microbiology and biotechnology , pyroptosis , in vivo , cd11c , haematopoiesis , biology , immunology , inflammation , stem cell , phenotype , biochemistry , gene
Inflammasome activation is associated with numerous diseases. However, in vivo detection of the activated inflammasome complex has been limited by a dearth of tools. We have developed transgenic mice that ectopically express the fluorescent adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and characterized the formation of assembled inflammasome complexes ("specks") in primary cells and tissues. In addition to hematopoietic cells, we have found that a stromal population in the lung tissues formed specks during the early phase of influenza infection, whereas myeloid cells showed speck formation after 2 days. In a peritonitis and group B streptococcus infection model, a higher percentage of neutrophils formed specks at early phases of infection, while dendritic cells formed specks at later time points. Furthermore, speck-forming cells underwent pyroptosis and extensive release of specks to the extracellular milieu in vivo. These data underscore the importance of free specks during inflammatory processes in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom