z-logo
open-access-imgOpen Access
Cholesterol-Independent SREBP-1 Maturation Is Linked to ARF1 Inactivation
Author(s) -
Lorissa J. Smulan,
Wei Ding,
Elizaveta Freinkman,
Sharvari Gujja,
Yvonne J. K. Edwards,
Amy K. Walker
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.05.086
Subject(s) - sterol regulatory element binding protein , lipogenesis , phosphatidic acid , diacylglycerol kinase , microbiology and biotechnology , transcription factor , biology , golgi apparatus , gene knockdown , gtpase , biochemistry , rna interference , phospholipid , lipid metabolism , chemistry , gene , signal transduction , endoplasmic reticulum , rna , membrane , protein kinase c
Lipogenesis requires coordinated expression of genes for fatty acid, phospholipid, and triglyceride synthesis. Transcription factors, such as SREBP-1 (Sterol regulatory element binding protein), may be activated in response to feedback mechanisms linking gene activation to levels of metabolites in the pathways. SREBPs can be regulated in response to membrane cholesterol and we also found that low levels of phosphatidylcholine (a methylated phospholipid) led to SBP-1/SREBP-1 maturation in C. elegans or mammalian models. To identify additional regulatory components, we performed a targeted RNAi screen in C. elegans, finding that both lpin-1/Lipin 1 (which converts phosphatidic acid to diacylglycerol) and arf-1.2/ARF1 (a GTPase regulating Golgi function) were important for low-PC activation of SBP-1/SREBP-1. Mechanistically linking the major hits of our screen, we find that limiting PC synthesis or LPIN1 knockdown in mammalian cells reduces the levels of active GTP-bound ARF1. Thus, changes in distinct lipid ratios may converge on ARF1 to increase SBP-1/SREBP-1 activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom