Fbxo30 Regulates Mammopoiesis by Targeting the Bipolar Mitotic Kinesin Eg5
Author(s) -
Yan Liu,
Yin Wang,
Zhanwen Du,
Xiaoli Yan,
Pan Zheng,
Yang Liu
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.03.083
Subject(s) - centrosome , kinesin , microbiology and biotechnology , mitosis , biology , proteostasis , cell cycle protein , cell cycle , microtubule , cell growth , cell , genetics
Fbxo30 is an orphan member of the F-box protein family with no known substrate or function. Here we report that, while Fbxo30(-/-) mice exhibit normal development, growth, lifespan, and fertility, the females fail to nurture their offspring as a result of defective mammopoiesis. Mass spectrometry analysis of Fbxo30-associated proteins revealed that Fbxo30 specifically interacts with the bipolar spindle kinesin EG5 (encoded by Kif11). As a result, Fbxo30 targets Eg5 for ubiquitinylation and controls its oscillation during the cell cycle. Correlated with EG5 dysregulation, Fbxo30(-/-) mammary epithelial cells exhibit multiple defects in centrosome homeostasis, mitotic spindle formation, and proliferation. Effects on proliferation, centrosome homeostasis, and mammopoiesis in the Fbxo30(-/-) mice were rescued through normalization of Eg5 activity using shRNA and/or an EG5 inhibitor. Our data reveal the Fbxo30-Eg5 interaction as a critical checkpoint in mammopoiesis and a critical role for ubiquitinylation-regulated Eg5 oscillation in the cell cycle.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom