z-logo
open-access-imgOpen Access
PAPERCLIP Identifies MicroRNA Targets and a Role of CstF64/64tau in Promoting Non-canonical poly(A) Site Usage
Author(s) -
HunWay Hwang,
Christopher Y. Park,
Hani Goodarzi,
John J. Fak,
Aldo Mele,
Michael J. Moore,
Yuhki Saito,
Robert B. Darnell
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.03.023
Subject(s) - microrna , untranslated region , immunoprecipitation , messenger rna , three prime untranslated region , biology , rna binding protein , computational biology , binding site , rna , genetics , gene
Accurate and precise annotation of 3' UTRs is critical for understanding how mRNAs are regulated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). Here, we describe a method, poly(A) binding protein-mediated mRNA 3' end retrieval by crosslinking immunoprecipitation (PAPERCLIP), that shows high specificity for mRNA 3' ends and compares favorably with existing 3' end mapping methods. PAPERCLIP uncovers a previously unrecognized role of CstF64/64tau in promoting the usage of a selected group of non-canonical poly(A) sites, the majority of which contain a downstream GUKKU motif. Furthermore, in the mouse brain, PAPERCLIP discovers extended 3' UTR sequences harboring functional miRNA binding sites and reveals developmentally regulated APA shifts, including one in Atp2b2 that is evolutionarily conserved in humans and results in the gain of a functional binding site of miR-137. PAPERCLIP provides a powerful tool to decipher post-transcriptional regulation of mRNAs through APA in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom