z-logo
open-access-imgOpen Access
SUMOylated ORC2 Recruits a Histone Demethylase to Regulate Centromeric Histone Modification and Genomic Stability
Author(s) -
Chao Huang,
Jinke Cheng,
Tasneem BawaKhalfe,
Xuebiao Yao,
Y. Eugene Chin,
Edward T.H. Yeh
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.02.091
Subject(s) - origin recognition complex , biology , control of chromosome duplication , eukaryotic dna replication , histone h2a , histone methylation , microbiology and biotechnology , dna replication factor cdt1 , licensing factor , histone , dna replication , genetics , dna methylation , dna , gene , gene expression
Origin recognition complex 2 (ORC2), a subunit of the ORC, is essential for DNA replication initiation in eukaryotic cells. In addition to a role in DNA replication initiation at the G1/S phase, ORC2 has been shown to localize to the centromere during the G2/M phase. Here, we show that ORC2 is modified by small ubiquitin-like modifier 2 (SUMO2), but not SUMO1, at the G2/M phase of the cell cycle. SUMO2-modification of ORC2 is important for the recruitment of KDM5A in order to convert H3K4me3 to H3K4me2, a "permissive" histone marker for α-satellite transcription at the centromere. Persistent expression of SUMO-less ORC2 led to reduced α-satellite transcription and impaired pericentric heterochromatin silencing, which resulted in re-replication of heterochromatin DNA. DNA re-replication eventually activated the DNA damage response, causing the bypass of mitosis and the formation of polyploid cells. Thus, ORC2 sustains genomic stability by recruiting KDM5A to maintain centromere histone methylation in order to prevent DNA re-replication.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom