z-logo
open-access-imgOpen Access
Structural and Functional Insights into the Unwinding Mechanism of Bacteroides sp Pif1
Author(s) -
Xianglian Zhou,
Wendan Ren,
S.R. Bharath,
Xuhua Tang,
Yang He,
Chen Chen,
Zhou Liu,
Dewang Li,
Haiwei Song
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.02.008
Subject(s) - helicase , dna , biophysics , g quadruplex , biology , microbiology and biotechnology , chemistry , rna , genetics , gene
Pif1 is a conserved SF1B DNA helicase involved in maintaining genome stability through unwinding double-stranded DNAs (dsDNAs), DNA/RNA hybrids, and G quadruplex (G4) structures. Here, we report the structures of the helicase domain of human Pif1 and Bacteroides sp Pif1 (BaPif1) in complex with ADP-AlF4(-) and two different single-stranded DNAs (ssDNAs). The wedge region equivalent to the β hairpin in other SF1B DNA helicases folds into an extended loop followed by an α helix. The Pif1 signature motif of BaPif1 interacts with the wedge region and a short helix in order to stabilize these ssDNA binding elements, therefore indirectly exerting its functional role. Domain 2B of BaPif1 undergoes a large conformational change upon concomitant binding of ATP and ssDNA, which is critical for Pif1's activities. BaPif1 cocrystallized with a tailed dsDNA and ADP-AlF4(-), resulting in a bound ssDNA bent nearly 90° at the ssDNA/dsDNA junction. The conformational snapshots of BaPif1 provide insights into the mechanism governing the helicase activity of Pif1.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom