z-logo
open-access-imgOpen Access
Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair
Author(s) -
Tony Gutschner,
Monika Haemmerle,
Giannicola Genovese,
Giulio Draetta,
Lynda Chin
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2016.01.019
Subject(s) - homology directed repair , cas9 , cell cycle , crispr , ubiquitin ligase , biology , microbiology and biotechnology , dna repair , dna , computational biology , genetics , gene , ubiquitin , nucleotide excision repair
CRISPR/Cas9 induces DNA double-strand breaks that are repaired by cell-autonomous repair pathways, namely, non-homologous end-joining (NHEJ), or homology-directed repair (HDR). While HDR is absent in G1, NHEJ is active throughout the cell cycle and, thus, is largely favored over HDR. We devised a strategy to increase HDR by directly synchronizing the expression of Cas9 with cell-cycle progression. Fusion of Cas9 to the N-terminal region of human Geminin converted this gene-editing protein into a substrate for the E3 ubiquitin ligase complex APC/Cdh1, resulting in a cell-cycle-tailored expression with low levels in G1 but high expression in S/G2/M. Importantly, Cas9-hGem(1/110) increased the rate of HDR by up to 87% compared to wild-type Cas9. Future developments may enable high-resolution expression of genome engineering proteins, which might increase HDR rates further, and may contribute to a better understanding of DNA repair pathways due to spatiotemporal control of DNA damage induction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom