z-logo
open-access-imgOpen Access
Spatiotemporal Control of Forkhead Binding to DNA Regulates the Meiotic Gene Expression Program
Author(s) -
Isabel AlvesRodrigues,
Pedro G. Ferreira,
Alberto Moldón,
Ana Vivancos,
Elena Hidalgo,
Roderic Guigó,
José Ayté
Publication year - 2016
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2015.12.074
Subject(s) - biology , meiosis , transcription factor , homologous recombination , microbiology and biotechnology , gene , genetics
Meiosis is a differentiated program of the cell cycle that is characterized by high levels of recombination followed by two nuclear divisions. In fission yeast, the genetic program during meiosis is regulated at multiple levels, including transcription, mRNA stabilization, and splicing. Mei4 is a forkhead transcription factor that controls the expression of mid-meiotic genes. Here, we describe that Fkh2, another forkhead transcription factor that is essential for mitotic cell-cycle progression, also plays a pivotal role in the control of meiosis. Fkh2 binding preexists in most Mei4-dependent genes, inhibiting their expression. During meiosis, Fkh2 is phosphorylated in a CDK/Cig2-dependent manner, decreasing its affinity for DNA, which creates a window of opportunity for Mei4 binding to its target genes. We propose that Fkh2 serves as a placeholder until the later appearance of Mei4 with a higher affinity for DNA that induces the expression of a subset of meiotic genes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom