Distinct Pores for Peroxisomal Import of PTS1 and PTS2 Proteins
Author(s) -
Malayko MontillaMartinez,
Sabrina Beck,
Jessica Klümper,
Michael Meinecke,
Wolfgang Schliebs,
Richard Wagner,
Ralf Erdmann
Publication year - 2015
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2015.11.016
Subject(s) - peroxisome , peroxisomal targeting signal , cytosol , chemistry , docking (animal) , biochemistry , biophysics , receptor , enzyme , biology , medicine , nursing
Two peroxisomal targeting signals, PTS1 and PTS2, recognized by cytosolic receptors Pex5 and cooperating Pex7/Pex18, direct folded proteins to the peroxisomal matrix. A pore consisting of the PTS1 receptor Pex5 and the docking protein Pex14 imports PTS1 proteins. We identified a distinct PTS2-specific pore, which contains the PTS2 co-receptor Pex18 and the Pex14/Pex17-docking complex as major constituents. The estimated maximal pore size of ∼ 4.7 nm is large enough to allow import of folded PTS2 proteins. PTS2 cargo proteins modulate complex gating, open probability, and subconductance states of the pore. While the PTS1 channel is transiently activated by arriving receptor-cargo complexes, the reconstituted PTS2 channel is constitutively present in an open state. However, the cargo-loaded PTS2 channel is largely impermeable to solutes and ions. Our results demonstrate that import of PTS1 and PTS2 proteins does not converge at the peroxisomal membrane as previously anticipated but is performed by distinct pores.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom