z-logo
open-access-imgOpen Access
MicroRNA-22 Gates Long-Term Heterosynaptic Plasticity in Aplysia through Presynaptic Regulation of CPEB and Downstream Targets
Author(s) -
Ferdinando Fiumara,
Priyamvada Rajasethupathy,
Igor Antonov,
Stylianos Kosmidis,
Wayne S. Sossin,
Eric R. Kandel
Publication year - 2015
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2015.05.034
Subject(s) - aplysia , neuroscience , downregulation and upregulation , biology , microbiology and biotechnology , synaptic plasticity , synapse , regulator , neurotransmitter , neurotransmission , receptor , central nervous system , gene , genetics
The maintenance phase of memory-related long-term facilitation (LTF) of synapses between sensory and motor neurons of the gill-withdrawal reflex of Aplysia depends on a serotonin (5-HT)-triggered presynaptic upregulation of CPEB, a functional prion that regulates local protein synthesis at the synapse. The mechanisms whereby serotonin regulates CPEB levels in presynaptic sensory neurons are not known. Here, we describe a sensory neuron-specific microRNA 22 (miR-22) that has multiple binding sites on the mRNA of CPEB and inhibits it in the basal state. Serotonin triggers MAPK/Erk-dependent downregulation of miR-22, thereby upregulating the expression of CPEB, which in turn regulates, through functional CPE elements, the presynaptic expression of atypical PKC (aPKC), another candidate regulator of memory maintenance. Our findings support a model in which the neurotransmitter-triggered downregulation of miR-22 coordinates the regulation of genes contributing synergistically to the long-term maintenance of memory-related synaptic plasticity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom