Calsyntenins Function as Synaptogenic Adhesion Molecules in Concert with Neurexins
Author(s) -
Ji Won Um,
Gopal Pramanik,
Ji Seung Ko,
MinYoung Song,
Dongmin Lee,
Hyun Kim,
KangSik Park,
Thomas C. Südhof,
Katsuhiko Tabuchi,
Jaewon Ko
Publication year - 2014
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2014.02.010
Subject(s) - synapse , excitatory synapse , inhibitory postsynaptic potential , biology , gene knockdown , neurotransmission , microbiology and biotechnology , excitatory postsynaptic potential , neuroscience , cell adhesion molecule , cell culture , biochemistry , genetics , receptor
Multiple synaptic adhesion molecules govern synapse formation. Here, we propose calsyntenin-3/alcadein-β as a synapse organizer that specifically induces presynaptic differentiation in heterologous synapse-formation assays. Calsyntenin-3 (CST-3) is highly expressed during various postnatal periods of mouse brain development. The simultaneous knockdown of all three CSTs, but not CST-3 alone, decreases inhibitory, but not excitatory, synapse densities in cultured hippocampal neurons. Moreover, the knockdown of CSTs specifically reduces inhibitory synaptic transmission in vitro and in vivo. Remarkably, the loss of CSTs induces a concomitant decrease in neuron soma size in a non-cell-autonomous manner. Furthermore, α-neurexins (α-Nrxs) are components of a CST-3 complex involved in CST-3-mediated presynaptic differentiation. However, CST-3 does not directly bind to Nrxs. Viewed together, these data suggest that the three CSTs redundantly regulate inhibitory synapse formation, inhibitory synapse function, and neuron development in concert with Nrxs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom