Sequential and Opposing Activities of Wnt and BMP Coordinate Zebrafish Bone Regeneration
Author(s) -
Scott Stewart,
Alan W. Gomez,
Benjamin E. Armstrong,
Astra L. Henner,
Kryn Stankunas
Publication year - 2014
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2014.01.010
Subject(s) - zebrafish , wnt signaling pathway , microbiology and biotechnology , regeneration (biology) , bone morphogenetic protein 2 , bone morphogenetic protein , biology , chemistry , computational biology , genetics , signal transduction , gene , in vitro
Zebrafish fully regenerate lost bone, including after fin amputation, through a process mediated by dedifferentiated, lineage-restricted osteoblasts. Mechanisms controlling the osteoblast regenerative program from its initiation through reossification are poorly understood. We show that fin amputation induces a Wnt/β-catenin-dependent epithelial to mesenchymal transformation (EMT) of osteoblasts in order to generate proliferative Runx2(+) preosteoblasts. Localized Wnt/β-catenin signaling maintains this progenitor population toward the distal tip of the regenerative blastema. As they become proximally displaced, preosteoblasts upregulate sp7 and subsequently mature into re-epithelialized Runx2(-)/sp7(+) osteoblasts that extend preexisting bone. Autocrine bone morphogenetic protein (BMP) signaling promotes osteoblast differentiation by activating sp7 expression and counters Wnt by inducing Dickkopf-related Wnt antagonists. As such, opposing activities of Wnt and BMP coordinate the simultaneous demand for growth and differentiation during bone regeneration. This hierarchical signaling network model provides a conceptual framework for understanding innate bone repair and regeneration mechanisms and rationally designing regenerative therapeutics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom