z-logo
open-access-imgOpen Access
Increased Expression of Enzymes of Triglyceride Synthesis Is Essential for the Development of Hepatic Steatosis
Author(s) -
Jingling Jin,
Polina Iakova,
Meghan Breaux,
Emily Sullivan,
Nicole Jawanmardi,
Dahu Chen,
Yanjun Jiang,
Estela M. Medrano,
Nikolai A. Timchenko
Publication year - 2013
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2013.02.009
Subject(s) - steatosis , nonalcoholic fatty liver disease , gene knockdown , triglyceride , medicine , genetically modified mouse , endocrinology , transgene , biology , fatty liver , gene , disease , biochemistry , cholesterol
Molecular mechanisms underpinning nonalcoholic fatty liver disease (NAFLD) are not well understood. The earliest step of NAFLD is hepatic steatosis, which is one of the main characteristics of aging liver. Here, we present a molecular scenario of age-related liver steatosis. We show that C/EBPα-S193D knockin mice have age-associated epigenetic changes and develop hepatic steatosis at 2 months of age. The underlying mechanism of the hepatic steatosis in old wild-type (WT) mice and in young S193D mice includes increased amounts of tripartite p300-C/EBPα/β complexes that activate promoters of five genes that drive triglyceride synthesis. Knockdown of p300 in old WT mice inhibits hepatic steatosis. Indeed, transgenic mice expressing dominant-negative p300 have fewer C/EBPα/β-p300 complexes and do not develop age-dependent hepatic steatosis. Notably, the p300-C/EBPα/β pathway is activated in the livers of patients with NAFLD. Thus, our results show that p300 and C/EBP proteins are essential participants in hepatic steatosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom