z-logo
open-access-imgOpen Access
Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties
Author(s) -
Vikash Kumar Vyas,
Arepalli Sampath Kumar,
Akher Ali,
Sunil Prasad,
Pradeep Srivastava,
Sarada Prasanna Mallick,
Md Ershad,
Saryoo Prasad Singh,
Ram Pyare
Publication year - 2016
Publication title -
boletín de la sociedad española de cerámica y vidrio
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 24
eISSN - 2173-0431
pISSN - 0366-3175
DOI - 10.1016/j.bsecv.2016.09.005
Subject(s) - bioactive glass , simulated body fluid , materials science , non blocking i/o , ceramic , nickel oxide , crystallization , chemical engineering , oxide , mineralogy , nuclear chemistry , composite material , chemistry , metallurgy , scanning electron microscope , organic chemistry , engineering , catalysis
Many type of oxide substituted glass-ceramics like strontium, cobalt, barium and titanium have shown bioactivity with improved mechanical properties. The present work reports the in vitro bioactivity and mechanical properties of nickel oxide substituted in bioactive glass-ceramic and results were compared with 45S5 bioactive glass-ceramic. Bioactive glass ceramics were processed through controlled crystallization of their respective bioactive glasses. The formed crystalline phases in bioactive glass-ceramics were identified using X-ray diffraction (XRD) analysis. The formation of HA layer was assessed by immersing them in the simulated body fluid (SBF) for different soaking periods. The formation of hydroxyapatite was confirmed by FTIR spectrometry, SEM and pH measurement. Densities and mechanical properties of the samples were found to increase considerably with an increasing the concentration of nickel oxide. A decrease in glass transition temperature (Tg) with NiO addition showed that the nickel oxide had acted as an intermediate in smaller quantities in the bioactive glass. The cell culture studies demonstrated that the samples containing low concentration of NiO from 0 to 1.65mol% were non-cytotoxic against osteoblast cells. Finally, this investigation clearly concluded that NiO doped bioactive glass would be potential biomaterials for biomedical applications

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom