
Solution chemistry and secondary ion emission from amine-glycerol solutions
Author(s) -
Peter J. Todd
Publication year - 1991
Publication title -
journal of the american society for mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 127
eISSN - 1879-1123
pISSN - 1044-0305
DOI - 10.1016/1044-0305(91)80059-g
Subject(s) - chemistry , amine gas treating , ion , deprotonation , protonation , yield (engineering) , mass spectrum , analytical chemistry (journal) , inorganic chemistry , organic chemistry , thermodynamics , physics
Analytical Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Secondary ion mass spectra were obtained from a series of C4-C10 n-alkylamines introduced via the gas phase onto glycerol. It was found that the amine-characteristic secondary ion intensity varied linearly with amine partial pressure. Henry's law constants and surface activity constants for each of the amines in glycerol solution were measured. A linear correlation was found between amine-characteristic secondary ion intensity and Henry's law concentrations. The concentrations calculated from Henry's law were too low to yield the intensities observed, indicating that secondary ion precursors were not free-base amine molecules but ions in solution. Explicit kinetic equations describing glycerol and amine protonation and deprotonation as a result of primary ion damage to the solutions are derived to rationalize the observed spectra.